
SiftGPU Manual
Changchang Wu

University of North Carolina at Chapel Hill

Introduction

SiftGPU is a GPU implementation of David Lowe‟s Scale Invariant Feature Transform.

The following steps can use GPU to process pixels/features in a parallel way:

1. Convert color to intensity, and up-sample or down-sample input images

2. Build Gaussian image pyramids (Intensity, Gradient, DOG)

3. Keypoint detection (sub-pixel and sub-scale localization)

4. Generate compact feature lists with GPU histogram reduction

5. Compute feature orientations and descriptors

By taking advantages of the large number of graphic processing units in modern graphic

cards, this GPU implementation of SIFT can achieve a large speedup over CPU.

Not all computation is faster on GPU, so this library also tries to find the best option for

each step. The latest version does intensity conversion, down-sampling, multi-orientation

feature list rebuilding, and descriptor normalization on CPU. The latest keypoint list

generation is also a GPU/CPU mixed implementation.

Running SiftGPU requires a high-end graphic card that 1) has a large graphic memory to

keep the allocated intermediate textures for efficient processing of new images. 2)

Supports dynamic branching. The loops in orientation computation and descriptor

generation are decided by the scale of the features, and they cannot be unrolled.

SiftGPU now runs on GLSL by default, which works for both ATI and nVidia. You can

optionally use CUDA for nVidia graphic cards.

Interface: class SiftGPU

Class SiftGPU is provided as the interface of this library. The following examples will
show how to use this class to run SIFT in a different ways.

Initialization, Normal initialization for an application

 //create a SiftGPU instance

 SiftGPU sift;

 //processing parameters first

 char * argv[] ={ "-fo", "-1", “-v”, “1”};

 //-fo -1, starting from -1 octave

//-v 1, only print out # feature and overall time

 sift.ParseParam(4, argv);

 //create an OpenGL context for computation

 int support = sift.CreateContextGL();

//call VerfifyContexGL instead if using your own GL context

 //int support = sift.VerifyContextGL();

 if(support != SiftGPU::SIFTGPU_FULL_SUPPORTED) return;

Example #1, run sift on a set of images and get results:

//process an image, and save ASCII format SIFT files

 if(sift.RunSIFT("1.jpg")) sift.SaveSIFT("1.sift");

//you can get the feature vector and store it yourself

 sift.RunSIFT("2.jpg");

 int num = sift.GetFeatureNum();//get feature count

 //allocate memory for readback

vector<float> descriptors(128*num);

vector<SiftGPU::SiftKeypoint> keys(num);

 //read back keypoints and normalized descritpros

 //specify NULL if you don’t need keypionts or descriptors

 sift.GetFeatureVector(&keys[0], &descriptors[0]);

Example #2, run SiftGPU with your own image data

// This is very convenient for camera application

 int width = …, height =…;

 unsigned char *data = … // your (intensity) image data

sift.RunSIFT (width, height, data, GL_RGBA, GL_UNSIGNED_BYTE);

//Using GL_LUMINANCE data saves transfer time

Example #3, specify a set of image inputs using SetImageList

 char * files[4] = { “1.jpg”, “2.jpg”, “3.jpg”, “4.jpg”};

 sift.SetImageList(4, files);

 //Now you can process an image with its index

 sift.RunSIFT(1);

 sift.RunSIFT(0);

Example #4, control storage allocation

//Option1, use “-p”, “1024x1024” to initialize the texture

//storage for size 1024x1024, so that processing smaller

//images does not require texture re-allocation

//char * argv[] ={ "-m", "-s", “-p”, “1024x1024”};

//sift.ParseParam(4, argv);

//Option2, manually allocate the storage

sift.AllocatePyramid(1024, 1024);

// processing images with different sizes.

sift.RunSIFT(“1024x768.jpg”);

sift.RunSIFT(“768x1024.jpg”);

sift.RunSIFT(“800x600.jpg”);

Example #5, runtime library loading

//new exported function CreateNewSiftGPU

 SiftGPU* (*pCreateNewSiftGPU)(int) = NULL;

//Load siftgpu dll… use dlopen in linux/mac

 HMODULE hsiftgpu = LoadLibrary("siftgpu.dll");

 //get function address

 pCreateNewSiftGPU = (SiftGPU* (*) (int))

 GetProcAddress(hsiftgpu, "CreateNewSiftGPU");

 //create a new siftgpu instance

//exported functions are all virtual

 SiftGPU * psift = pCreateNewSiftGPU(1);

Example #6, Compute descriptor for user-specified keypoints

vector<SiftGPU::SiftKeypoint> keys;

//load your sift keypoints using your own function

LoadMyKeyPoints(…);

//Specify the keypoints for next image to siftgpu

 sift.SetKeypointList(keys.size(), &keys[0]);

 sift.RunSIFT(new_image_path);// RunSIFT on your image data

 //****If it is to re-run SIFT with different keypoints***

 //Use sift.RunSIFT(keys.size(), &keys[0]) to skip filtering

//Get the feature descriptor

float descriptor* = new [128 * keys.size()];

//We only need to read back the descriptors

sift.GetFeatureVector(NULL, descriptor);

Example #7, Compute (guided) putative sift matches.

//specify the naximum number of features to match

SiftMatchGPU matcher(4096);

//You can call SetMaxSift anytime to change this limit

//You can call SetLanguage to select shader language

//between GLSL/CUDA before initialization

//Verify current OpenGL Context and do initialization

 if(matcher.VerifyContextGL() == 0) return;

//Set two sets of descriptor data to the matcher

 matcher.SetDescriptors(0, num1, des1);

 matcher.SetDescriptors(1, num2, des2);

//Match and read back result to input buffer

int match_buf[4096][2];

int nmatch = matcher.GetSiftMatch(4096, match_buf);

// You can also use homography and/or fundamental matrix to

// guide the putative matching

// Check function SiftMatchGPU::GetGuidedMatch

// For more details of the above functions, check

// SimpleSIFT.cpp and SiftGPU.h in the code package.

Example #8, Choosing the GPU for computation (under Multi-GPU system)

//Suppose (1024,0) is in the screen of the second GPU

//For CUDA, use “-cuda”, “device_index”

//For Windows and X11, use “-display”, “display_name”

char * argv[] ={"-fo", "-1", “-display”, “\\\\.\DISPLAY4”};

 siftgpu->ParseParam.(4, argv);

 if(!siftgpu->VerifyContextGL) return;

//GPU selection can’t be changed after VerifyContextGL

Example #9, Using a local multi-process mode NEW

//1st parameter, 7777 for the socket port used by server

//2nd parameter, NULL for local process mode

SiftGPU* siftgpu = new ServerSiftGPU(7777, NULL);

//You can create multiple ServerSiftGPU instances, and

//let them use different GPUs.

//Everything else is the same.

siftgpu->ParseParam(…); //choose GPU if more than one

if(!siftgpu->VerifyContextGL()) return;

//Call RunSIFT functions. Most functions are supported

siftgpu->RunSIFT("1.jpg");

//when you call delete, the server will be shut down.

delete siftgpu;

Example #10, Using a remote SiftGPU on different computer NEW

//Suppose, you have a computer at mygpu.com

//you first start a siftgpu server by run

// bin/server_siftgpu –server 7777 [siftgpu param]

//From a different computer you can do as follows

SiftGPU* siftgpu = new ServerSiftGPU(7777, “mygpu.com”);

siftgpu->ParseParam(…)

//if GPU selection is already done on the server.

//New GPU selection won’t work

 if(!siftgpu->VerifyContextGL()) return;

delete siftgpu;
//after delete, server keeps running and accept new clients

OpenGL Context

SiftGPU uses OpenGL (Not for the new multi-process mode and remote mode), and there

has to be an OpenGL context to run the program. There are several ways to initialize the

OpenGL context:

1. Use function SiftGPU::CreateContextGL. It uses Win32/XLib (or GLUT depending

on your compilation setting) to create an invisible window and use that GL context

to run the shaders. (The example SimpleSIFT is doing this way).

2. Use GLUT yourself (see example project TestWinGlut).

3. Use raw OpenGL functions (see example project TestWin). You have to make

sure you have an active context before calling SiftGPU functions (for example: call

WglMakeCurrent to set the context in windows).

Multiple Implementations (GLSL/CUDA)

The code package includes 3 different implementations of SiftGPU. GLSL

Unpacked/Packed and CUDA. They can be selected by using combination of “-glsl”, “-

unpack”, “-pack” and “-cuda”. “-glsl -pack” is now default.

The processing speed decreases when the image size increases. On NVIDIA 8800 GTX,

the GLSL packed version is faster than CUDA for large images, but CUDA is faster for

small images. This order could be different on different GPUs, and you can just try them

on your computer to select the best one for different image sizes.

SiftMatchGPU also has implementations for GLSL and CUDA, and they can be selected

by calling function SiftMatchGPU::SetLanguage. GLSL matching is slightly slower than

CUDA for exhaustive putative matching. GLSL matching is faster for guided putative

matching.

SiftGPU for Multiple-GPU

Device Selection: You can select a particular GPU for SiftGPU computation. Different

method need to be used in different systems and different implementations.

When using CUDA-based SiftGPU, you need to set parameter “-cuda device_index” when

you want to use a particular device. For SiftMatchGPU, you need call SiftMatchGPU::

SetLanguage(SIFTMATCH_CUDA + device_index)

When using OpenGL-based implementation under Win32, you need to specify a device

that is obtained by EnumDisplayDevices (for example, “-display”, “\\\\.\\DISPLAY4”). This

is now tested under WIN7 on a machine that has both ATI and nVidia cards.

When using OpenGL-based implementation under X-Window, you need use parameter

“-display hostname:number.screen_number” to select a display to let SiftGPU use the

corresponding GPU for computation.

Multiple SiftGPU instances

Note that CUDA version can be multi-threaded if each thread is setup to use

different device. See MultiThreadSIFT for an demo of this.

It is hard for the OpenGL-based one to use the multiple GPUs in the same process.

However, you can run multiple GPU programs in different process to utilize

different GPUs. The new version of SiftGPU is able to simply work as a client and

controls multiple worker processes. It is able to automatically create worker

processes on local computer and connect to some existing server on local/remote

computer.

SiftGPU includes an implementation of SiftGPU server [server_siftgpu in

server.cpp] and SiftGPU client [class ServerSiftGPU], with which you can easily

run multiple SiftGPU instances on different GPUs on your local computer, or use a

remote computer to run all the computation. What‟s most important is that it

doesn‟t change any of the programming interfaces, and all the wrapping is done

internally.

You can look at server.cpp for examples. It is not only the implementation of the

several but also includes some client-server example. The two command line

options “-test” and “-test2” gives you the two examples.

Memory Management

SiftGPU needs to allocate OpenGL textures (or CUDA linear memory/texture) for storing

intermediate results. This allocation is a time-consuming step, and it would be efficient if

memory re-allocation is infrequent and the storage can be re-used to process lots of

images. The best performance can be obtained when you pre-resize all images to a same

size, and process them with one SiftGPU instance.

When starting up, you can pre-allocate the memories to fit some specified size or SiftGPU

will automatically fit the first image. You can also manually re-allocate the active pyramid

at anytime by calling SiftGPU::AllocatePyramid(int width, int height).

While processing an image that has a different size, the storage by default will

automatically resize to fit the largest width and the largest height so far. But you can pre-

allocate it to the largest size you know so that there won‟t be any re-allocation. SiftGPU

reuses existing storage to process any smaller images that can fit in (See example 4).

Optionally, you can select a tight mode by calling function SiftGPU::SetTightPyrmid(int

tight = 1). The storage will then resize to any new image size. It does save memory for

smaller images, but there will be a re-allocation each time when the image size changes.

NOTE: When you run TestWinGlut with the first input image, it will print out the total

number of megabytes of textures it takes (not including the copy of the original 4-channel

image). Please do compare that number with your total number of GPU memory.

Parameter System (used by SiftGPU::ParseParam)

 ♠ the parameter can be changed after initialization in all implementations
 ♦ the parameter can be changed after initialization in CUDA implementation

-i <strings> Filenames of the input images (for example: -i 1.jpg 2.jpg 3.jpg)

-il <string> Filename of an image list file

-o <string> Where to save SIFT features

-f <float> ♦

Factor for filter width [2*factor*sigma+1] (default : 4.0)

-w <float> ♦ Factor for orientation sample window [2*factor*sigma] (default : 2.0)

-dw <float> ♠ Factor for descriptor grid size [4*factor*sigma] (default : 3.0)

-fo <int> ♠

First Octave to start detection (default: 0)

-no <int> Maximum number of octaves (default: not limit)

-d <int> DOG levels in an octave (default: 3)

-t <float> ♦ DOG threshold (default: 0.02/3)

-e <float> ♦ Edge Threshold (default : 10.0)

-m –mo <int=2>

Number of possible Feature Orientations (default : 2)

-m2p Use packed orientations (one float to store 2 orientations)

-m2p and –m1 may be slower than the default (-m 2)

-s <int=1>

Enable sub-pixel Localization. Use 0 to disable sub-pixel.

-lc <int =-1> CPU/GPU mixed Feature List Generation (default : 6)

Use GPU first, and use CPU when reduction size <= 2 ^num

When <num> equals -1, no GPU reduction will be used

-noprep Upload raw data to GPU if specified (Converting RGB to LUM and

down-sampling is running on CPU by default)

-sd Skip descriptor computation if specified

-unn ♠ Write un-normalized descriptor if specified

-b ♠ Write binary format descriptors

-fs <int>

Block size for feature storage <default : 4> (4 or 8 might be better

than 1 in GPU parallelism)

-cuda <index=0> Use CUDA based implementation, and select device

-tight Automatically resize storage to fit tightly to new image size

(in the default mode, the storage dimension is only increased)

-p WxH Set the dimension for initializing pyramids. For example: -p

1024x768 will let all pyramid initialized to 1024x768

-v <level> ♠ Same effect as calling SetVerbose(level)

0, no output at all, except errors

1, print out over all timing and features numbers

2, print out timing for each steps

3/4, print out timing for each octaves/ levels

-ofix ♠ Fix the orientation of all features to 0

-ofix-not ♠ Disable -ofix

-loweo ♠ Let (0, 0) be center of top-left pixel instead of corner with this

parameter. The corner is (0, 0) by default, but Lowe‟s SIFT and

sift++ are using the pixel center.

-maxd ♠ Maximum working dimension. When some level images are larger

than this, the input image will be automatically down-sampled.

(default: 2560(unpacked) / 3200(packed))

-exit Exit the TestWinGlut application after processing the image.

(otherwise the viewer will show up)

-di ♦ For OpenGL-based, use dynamic array indexing in histogram

computation in the orientation computation

For CUDA, use dynamic array indexing in descriptor generation.

-pack(default)

-unpack

Use packed/unpacked implementation. The packed version should

be faster than the unpacked version.

-sign ♦ When specified, output scale of local DOG minimum keypoints will

be multiplied by -1.

-display name Used to select GPU according to display

-tc, -tc1 <int> ♠

-tc2 <int> ♠

-tc3 <int> ♠

Set a soft limit to number of detected features, provide -1 to disable.

-tc, -tc1, keep the highest levels.

-tc2, keep the highest level, (should be faster than -tc)

-tc3, keep the lowest levels

-nogl Use –nogl for CUDA to skip all OpenGL calls. Previously OpenGL is

still used for data transfer. Will use CPU if –nogl is used.

 You can also change the default parameters in GlobalUtil.cpp and compile it yourself.

SiftGPU Viewers

There are 2 GUI viewers for SiftGPU

TestWinGlut is a GLUT-based viewer

TestWin.exe directly uses Win32 API to control OpenGL Contexts

There are 7 view modes in the viewers:

0, original image and feature (drawn as blue points or rectangles):

1, Gaussian pyramid

2, octaves (View different octaves one by one)

3, levels (View different levels one by one)

4, the pyramid of difference of Gaussian

5, the pyramid of image gradient

6, detected keypoints in levels. Red points are the local maxima, and green points

are local minima. You can zoom to see the details in levels

Viewer keys

You can loop through these view modes by pressing the following keys:

Enter, next view

Backspace, previous view

Space . (>) next sub-view/level/octave (in view mode 0, 2, 3)

, (<) previous sub-view/ level/octave (in view mode 0, 2, 3)

x, Escape exit

Some other controls are as follows:

Mouse click, hold and move to pan the view

r Go to the next image if there is, and re-compute SIFT

o reset coordinate

+, = zoom in

-, zoom out

l start/stop loopy processing of a set of images

c Randomize the colors for sift feature box display in view mode 0-2

q Change verbose level 2-1-0-2-1-0…

Demos

1. There are three demo batch files in the „demos‟ folder.

Demo1.bat is a basic example of SiftGPU. Try step through all the views to see

the intermediate results of SIFT using the controls explained in the last section.

Demo2.bat shows the processing of a file that contains a list of image filenames.

The images in this demo are all of size 640x480. After the viewer shows up, press

„l‟ to start/stop process the input images one by one repeatedly. Other keys also

work to change the view modes during the loop.

Demo3.bat shows the processing of a list of images of varying sizes.

Evaluation-box.bat computes the sift features for comparing with Lowe‟s result.

2. SimpleSIFT project in the workspace/solution shows how to use SiftGPU without GUI.

It also shows how to read back SIFT results from SiftGPU. There is also an optional

macro which enables runtime loading of SiftGPU library.

3. Speed project shows how to evaluate the speed of SiftGPU

4. ServerSiftGPU shows how to use SiftGPU as a computation server. The file

/src/ServerSiftGPU/server.cpp gives the implementation of the server. With argument

“-test” and “-test2” it can run as a client, which demos the usage of ServerSiftGPU.

5. MultiThreadSIFT shows how to multi-thread SiftGPU and use multiple GPU devices.

