P3.5P: Pose Estimation With Unknown Focal Length Changchang Wu Google Inc.

Problem	Unknowns	DoF	Input	
P3P	R, T	6	3	
P3.5P	f, R, T	7	3.5	
P4P	f, R, T	7	4	
P5.5P	3x4 P	11	5.5	
P6P	3x4 P	11	6	
Constraints			Parametrization	
Constraints		Parar	netrization	A
Constraints (x_i, y_i) : persp	pective projection	Parar n Linea	netrization r combination	A P
Constraints $(x_i, y_i) : persp$ $P\Omega P^{\top} \sim diag($	pective projection $f^2, f^2, 1$): focal le	n Linea of nul	netrization r combination I space	A P P

A New Camera Parametrization

The naive parametrization leads to 2x solutions:

$$P = \begin{bmatrix} f & & \\ & f & \\ & & 1 \end{bmatrix} R \begin{bmatrix} I & -C \end{bmatrix} = \begin{bmatrix} -f & \\ & -f \end{bmatrix}$$

- Also degenerate for planar points (not general).
- Decompose the camera rotation matrix:

$$= R_{\theta} R_{\rho} = \underbrace{R(z, \theta)}_{\text{around } z} \underbrace{R(\Phi, \rho)}_{\text{around } \varphi \perp z}$$

A compact parametrization for camera with unknown focal length:

$$P = \begin{bmatrix} K_{\theta} \ R_{\rho} & T \end{bmatrix} \longleftrightarrow K_{\theta} = \begin{bmatrix} f_c & -f_s \\ f_s & f_c \end{bmatrix}$$

- No redundancy; Works for planar points.

Solving the P3.5P Problem

 $K_{\theta}(f_c, f_s), \ R_{\rho} \ \text{as quaternion} = (1, q_x, q_y, 0)^{\top}, \ T = (t_x, t_y, t_z)^{\top}$

$$1 \left[\begin{pmatrix} \begin{bmatrix} -1 & & \\ & -1 & \\ & & 1 \end{bmatrix} R \right] \begin{bmatrix} I & -C \end{bmatrix}.$$

7 unknowns 7 equations Degree 3

4 unknowns 4 equations Degree 3

2 unknowns 4 equations Degree 6

Exact 7 image coordinates Minimal number of solutions Lowest polynomial degrees Smallest elimination template

Filtering by the 8th coordinate

omial degree	Solving method	Speed
6	GB (20x30)	0.108ms
7	GB (36x53)	0.257ms
	Polyeig	1.648ms
	Characteristic Polynomial	0.067ms
8	GB (53x63)	0.336ms
	GB (139x153)	3.320ms