Critical Configurations For Radial Distortion Self-Calibration

Changchang Wu
Google Inc.
VisualSFM

- A Visual Structure from Motion System, 2011
 - SiftGPU + Multicore BA + Fast SfM + GUI
 - Used in aerial survey, geology, archaeology, VFX, 3D printing, etc.
 - Reconstruction failures are often well understood.
Question from Thomas Gröninger

• A typical aerial image capture
 – UAV flies at roughly constant height
 – Camera pointing downward (nadir)
 – Un-calibrated GoPro camera

• Distorted reconstruction, why?
 – Ground should be roughly **FLAT**
 – Incorrect radial distortion estimation
Ambiguities in 3D Reconstruction

• Extensive studies for perspective cameras
 – For calibrated reconstruction from image velocity or two views, critical surfaces are *ruled quadrics* [Horn 1987, Maybank 1993].
 – Critical motions exist for self-calibration, for example, planar motion and orbital motion [Sturm 1997, Sturm 1999, Kahl et al. 2000, etc.].

• Little study for radial distortion self-calibration
 – Parallel feature displacements and camera motion under pure translation. [Mičušík et al. 2006]
Critical Surfaces

• Horn, *Motion fields are hardly ever ambiguous*, 1987

 – Given a translational speed t and rotational speed ω, the image velocity is a function of p and Z.

 $$ p' = V(t, \omega, p, Z) $$

 – For two motion $\{t_1, \omega_1\}$ and $\{t_2, \omega_2\}$, the surface pair $\{Z_1, Z_2\}$ that produce the same image velocity satisfy:

 $$ V(t_1, \omega_1, p, Z_1) = V(t_2, \omega_2, p, Z_2) $$

 – These *critical* surfaces are ruled quadrics.
The Problem

Given two cameras with

- **Different radial distortions** and
- Possibly different motions,

What surfaces can produce the same motion field?
Radial Distortion

- Central and centered radial distortion

 - Using an implicit radial distortion function $f(r^2)$

 - Not limited to specific radial distortion parameterization

 - Works for central omni-directional cameras
Critical Surfaces

• Image velocity in the undistorted image
 \[(Fp)' = (F + 2F'pp^T)p' \]

• Consider the following two configurations:
 - 1st camera with motion \{t_1, \omega_1\} without radial distortion
 - 2nd camera with motion \{t_2, \omega_2\} and distortion function \(f \)

Solve for the critical surface pair \(Z_1 \) and \(Z_2 \):

\[V(t_2, \omega_2, Fp, Z_2) = (F + 2F'pp^T) \quad V(t_1, \omega_1, p, Z_1) \]

Undistorted 2nd image

1st image
Critical Surface Pair

• The two corresponding surfaces

\[Z_1 = \frac{-2f'(t_1 \cdot \hat{z})(p^T p)(t_2 \times \hat{z})^T p + 2f'p^T t_1(t_2 \times \hat{z})^T p - (t_2 \times Ft_1)^T Fp}{((Fp) \times \omega_2 - F(p \times \omega_1)) \cdot (t_2 \times Fp) + 2f'(p^T p)p^T (\omega_1 \times \hat{z})(t_2 \times \hat{z})^T p} \]

\[Z_2 = \frac{Z_1 \ t_2 \cdot (\hat{z} \times p)}{(Ft_1 - ((Fp) \times \omega_2 - F(p \times \omega_1))Z_1) \cdot (\hat{z} \times p)} \]

– The critical surfaces in Horn’s paper can be obtained by using \(f = 1 \) and \(f' = 0 \);

– Complicated surfaces due to \(f' \neq 0 \);

– Often resembles the ruled quadrics.
Gröninger’s Case

- A special instantaneous motion:
 - Camera points downward, no roll
 \[t \perp \hat{z}, \omega \perp t \]
 - Moving on a sphere while pointing to the center, or moving on a plane while pointing perpendicularly

- A special configuration of two such motions:
 - Known translation \(t_1 \parallel t_2 \)
 - Known yaw speed \((\omega_1 - \omega_2) \cdot \hat{z} = 0 \)
 - Different pitch speed – the unknown
Simpler Surfaces

• Depth becomes a function of the radius

\[
Z_1 = \frac{2 (t_1 \cdot t_2) f' \neq 0}{\left(-(t_2 \cdot (\omega_2 \times \hat{z})) f^2 + (t_2 \cdot (\omega_1 \times \hat{z})) f \\
+ 2 (t_2 \cdot (\omega_1 \times \hat{z})) (p^T p) f' \right) / (t_1 \cdot t_2) Z_1}
\]

\[
Z_2 = \frac{(t_1 \cdot t_1) f - t_1 \cdot (\hat{z} \times (\omega_2 - f \omega_1)) Z_1}{(t_1 \cdot t_1) f - t_1 \cdot (\hat{z} \times (\omega_2 - f \omega_1)) Z_1}
\]

– Both are rotational symmetric surfaces
– Different surface curvatures (even signs)
– Does not exist without radial distortion!

Motion field p'

Two profile curves
Impact on Multi-view Reconstruction

- Persistent local ambiguity leads to accumulated error

- Synthetic captures with radial distortion
 - Capture#1 - plane
 - Capture#2 - Sphere

- Self-calibration using VisualSFM
 - Result#1
 - Result#2
In Real Life

To Thomas Gröninger:
– For your particular capture, the distortion cannot be solved by standard self-calibration

– Using camera calibration should resolve the problem

– (months later..) or, you try can change the motion pattern:
 • not always looking straight-down, or
 • not at constant height

From Thomas Gröninger:

Using approximate calibration

New capture & self-calibration
Recent Experimental Study

<table>
<thead>
<tr>
<th></th>
<th>Straight-down</th>
<th>Forward-looking 5°</th>
<th>Straight-down + 20° banked views</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Summary
 – Critical configurations for radial distortion self-calibration.
 – Radial distortion can be easily ambiguous (e.g. nadir capture).
 • Calibrate the camera, or alter the camera motion
 • Use additional motion priors in the reconstruction

• Future work
 – Extend the study to discrete viewpoints.

• Sincere thanks to Thomas Gröninger!
Questions?